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forcing terms are associated with this mixing.
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» Our modelling study shows significant potential impact in the TTL. Forcing
similar to that in ERA-Interim leads to temperature perturbations of 4 K and
zonal wind perturbations of 12 ms~'.
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Figure 8 : Mean vertical velocity w averaged
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Figure 3 : Climatological a) zonal acceleration and b) temperature tendency for JJA computed
using the rL scheme applied to ERA-Interim data from 1989 to 2009. i) shows the 10°N-10°S

average, and ii) shows the zonal average. 100 |-
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Acknowledgements: This research was supported by DOE grant SC0006841. We thank GFDL -1.0 0.5 0.0 05 1.0 1.5 2.0 25 3. much upwelling).
for the model and computer resources and ECMWF for providing the ERA-Interim data. W, ms”" X10™

125
150 |

This work has been accepted by the Journal of Atmospheric Science,
and is available in Early Online Release.

Pressure, hPa

» Forcing confined to 10°N—-10°S.

» Strongly localised — forcing strongest is over the Indian Ocean/Maritime
Continent.




