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Abstract The comparison of trends in various climate indices in observations and models is of
fundamental importance for judging the credibility of climate projections. Tropical tropospheric
temperature trends have attracted particular attention as this comparison may suggest a model deficiency.
One can think of this problem as composed of two parts: one focused on tropical surface temperature
trends and the associated issues related to forcing, feedbacks, and ocean heat uptake and a second part
focusing on connections between surface and tropospheric temperatures and the vertical profile of trends
in temperature. Here we focus on the atmospheric component of the problem. We show that two ensembles
of Geophysical Fluid Dynamics Laboratory HiRAM model runs (similar results are shown for National Center
for Atmospheric Research’s CAM4 model) with different commonly used prescribed sea surface
temperatures (SSTs), namely, the HadISST1 and “Hurrell” data sets, have a difference in upper tropical
tropospheric temperature trends (∼0.1 K/decade at 300 hPa for the period 1984–2008) that is about a factor
3 larger than expected from moist adiabatic scaling of the tropical average SST trend difference. We show
that this surprisingly large discrepancy in temperature trends is a consequence of SST trend differences
being largest in regions of deep convection. Further, trends, and the degree of agreement with observations,
not only depend on SST data set and the particular atmospheric temperature data set but also on the period
chosen for comparison. Due to the large impact on atmospheric temperatures, these systematic
uncertainties in SSTs need to be resolved before the fidelity of climate models’ tropical temperature trend
profiles can be assessed.

1. Introduction

Comparison of temperature trends from CMIP5 model runs with prescribed sea surface temperatures (SSTs)
(referred to as AMIP simulations due to their historical role in the Atmospheric Model Intercomparison
Project [Gates, 1992]) for the period 1981–2008 shows that some models do better than others when
compared to observations [Po-Chedley and Fu, 2012a]. Mitchell et al. [2013] show temperature trends of the
CMIP5/AMIP runs for the period 1979–2008 and argue that the model tropical tropospheric temperature
trends are within the statistical uncertainty of observations. Conversely, Po-Chedley and Fu [2012a] note
that nearly all AMIP models overestimate warming in the tropical upper troposphere, but those models
that perform best when compared to the observations use the HadISST1 data set [Rayner, 2003], whereas
the other models use a different data set [Hurrell et al., 2008], henceforth referred to as the Hurrell data set.
Previous studies have discussed using AMIP simulations to analyze the implications of different SST data
sets [Hurrell and Trenberth, 1999], and differences between microwave sounding unit (MSU) products and
SST reconstructions, using AMIP simulations to connect the two [Hurrell and Trenberth, 1997]. Here we run
the Geophysical Fluid Dynamics Laboratory (GFDL) HiRAM model with the HadISST1 and Hurrell SST data
sets and show that subtle (but systematic) differences in the two SST data sets induce an unexpectedly large
difference in upper tropospheric temperature trends and that conclusions regarding trends are sensitive to
period chosen. Similar results are obtained with the National Center for Atmospheric Research (NCAR) CAM4
model, pointing to a large uncertainty in atmospheric temperature trends induced by uncertainties in sea
surface temperature data.
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2. Methods
2.1. HiRAM Model Setup
The primary atmospheric model used in this study is the HiRAM model [Zhao et al., 2009] developed at
the Geophysical Fluid Dynamics Laboratory, running at an approximate spatial resolution of 50 km in the
horizontal and with 32 levels in the vertical, of which 10 are between 500 and 50 hPa. The moist convection
parametrization is described by Zhao et al. [2009, 2012]. The parametrized convection is rather strongly
inhibited compared to many other models, resulting in a larger fraction of tropical rainfall occurring on
resolved scales. This model has proven to be particularly useful in studying tropical cyclone statistics,
including interannual variability, recent trends, and the response to climate change [Zhao et al., 2009;
Held and Zhao, 2011; Zhao et al., 2012; Zhao and Held, 2012; Zhao et al., 2013]. The model uses a
horizontal grid with the topology of a cube. Both 50 km (180 × 180 grid points on each face of the cube)
and 25 km (360 × 360) versions of the model have been analyzed. A three-member ensemble of AMIP
simulations from 1979 to 2008 using the 50 km model, and a two-member ensemble of simulations
with the 25 km model, were deposited in the CMIP5 archive [Hurrell et al., 2011]. These runs used the
HadISST1 data set as boundary conditions for continuity with previous work. In this paper we focus on
the 50 km model and make use of the three-member ensemble in the CMIP5 archive plus an additional
three-member ensemble using the Hurrell data set, which is used by most of the other AMIP simulations in
the archive.

All of these simulations include changing forcing agents: volcano-generated and anthropogenic aerosols,
well-mixed greenhouse gases, prescribed time-varying ozone concentrations, and variations in the
incoming solar irradiance. There are no prescribed changes in land use. The sensitivity of model temperature
trends to atmospheric forcings (as compared to the sensitivity to SSTs) is discussed in section 3.3 below.

All quantities are computed using the ensemble average of the tropical average (20◦S–20◦N) data, unless
otherwise stated. We calculate trends for the period 1981–2008 to avoid previously noted problems in the
SST data before 1981 [Po-Chedley and Fu, 2012a] and for the period 1984–2008 to avoid suspiciously large
differences in the two SST data sets over the period 1982/1983 identified below. The calculation of the
statistical uncertainty in trends is described in Appendix A.

2.2. CAM4 Model Setup
In order to evaluate the sensitivity of results to choice of atmospheric general circulation model, we
performed two additional model runs with the NCAR Community Earth System Model (CESM) version 1 with
CAM4 atmospheric physics [Neale et al., 2010]. The model is run with 1.9 × 2.5◦ horizontal resolution and 26
vertical levels, with one run based on HadISST1 and one run based on the Hurrell SSTs. For both runs, the
atmospheric forcings are perpetual year 2000 conditions (see section 3.2 below).

2.3. Atmospheric Temperature Observations
The MSU temperature record is based on measurements from different satellites, and various groups have
attempted to homogenize the measurements and remove biases. We use the Remote Sensing Systems
(RSSs) version 3.3 data [Mears and Wentz, 2009a, 2009b], the University of Alabama in Huntsville (UAH)
version 5.6 data [Christy et al., 2003], and the University of Washington (UW) data [Po-Chedley et al., 2014].
Problems in the UAH data homogenization have been pointed out[Po-Chedley and Fu, 2012a; Po-Chedley
and Fu, 2012b, 2013], [Po-Chedley et al., 2014], and the UAH data are shown here for comparison with
previously published results.

The MSU instrument is processed into channels that have weight in the lower troposphere (TLT), the
midtroposphere (TMT), and the lower stratosphere (TLS). The TMT channel has a significant stratospheric
component (which contaminates the tropospheric trends with stratospheric trends that are controlled by
very different processes), much of which can be removed by taking a linear combination of TMT and TLS
[Fu et al., 2004], resulting in the TTT channel (also referred to as T24). Equivalent quantities are calculated for
each ensemble using the weighting functions provided by RSS.

2.4. Sea Surface Temperature Data
The two SST data sets (HadISST1 and Hurrell) are based on a very similar set of observations. Both are based
on ship tracks and buoy data from the Comprehensive Ocean-Atmosphere Data Set project [Woodruff et
al., 1987]. After November 1981, satellite data from the advanced very high resolution radiometer (AVHRR)
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Figure 1. (a) Deseasonalized monthly mean midtropospheric temperatures (TTT channel; see text) from the HadISST1
ensemble (blue), the Hurrell ensemble (red), and the RSS MSU data set (black) 20◦S–20◦N average. (b) Deseasonalized
monthly mean HadISST1 and Hurrell SST 20◦S–20◦N average from 1979 to 2008. (c) The monthly mean difference Hurrell
minus HadISST1 (thin) and the difference with a 12 month running mean applied (thick). The vertical marker indicates
November 1981, when the AVHRR satellite observations begin.

instrument are assimilated into both products. However, the methods for assimilation and bias correction
differ between the two. HadISST1 uses the reduced space optimum interpolation method [Kaplan et al.,
1997], whereas Hurrell uses the NOAA Optimum Interpolation v2 (OI v2) product [Reynolds et al., 2002]. The
OI v2 procedure has a higher spatial resolution, and therefore, the Hurrell data set represents regions with
high gradients in SST such as the Gulf Stream much better than the HadISST1 data set. However, it is not a
priori clear if more detail in the SSTs is important for the tropical tropospheric warming problem or which
data set is more suitable for such studies.

3. Results
3.1. Temperature Trends
Figure 1a shows the deseasonalized TTT upper tropospheric temperatures averaged over 20◦S–20◦N from
the AMIP configurations used in this study and the RSS TTT data. AMIP simulations at first glance closely
match observations, especially regarding interannual variability as noted previously [Hurrell and Trenberth,
1997], not surprisingly given the tight vertical coupling in the tropical troposphere. The standard picture
of the tropics involves convection placing the atmosphere on a moist adiabat, with wave dynamics
maintaining temperatures that are horizontally uniform, by adjusting the temperature of the part of the
tropical atmosphere not actively convecting to more or less closely match this moist adiabat. But one
needs to ask “which moist adiabat?” given the spatially inhomogeneous temperature trends at the surface
[Sobel et al., 2002].

Figure 1b shows the tropical mean (20◦S–20◦N) monthly mean of both SST data sets (deseasonalized),
with the difference shown in Figure 1c. Before November 1981, the data sets are offset by approximately a
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Figure 2. Atmospheric trends for the two time periods (a and b)
1981–2008 and (c and d) 1984–2008. Figures 2a and 2c show profiles of
temperature trend for each ensemble (solid lines). The symbols show
the trend for different MSU channels (black is RSS data, green is UAH
data, magenta is UW data, and blue and red are the equivalent model
quantities). Figures 2b and 2d show profiles of the ratio of the difference
in atmospheric trend to the difference in the SST trend between the two
ensembles (black) and the ratio using precipitation-weighted SST in place
of average SST (green solid). The trend difference ratio consistent with a
moist adiabat is also shown (green dotted). The shading shows the 95%
confidence interval derived from the ensemble spread (see Appendix A).

constant, as during this period Hurrell
uses HadISST1 combined with a fixed
climatology. After November 1981,
AVHRR satellite data are used, and the
two data sets diverge rapidly, with a
large discrepancy between the two
during 1982 and 1983. Whatever the
explanation for the relatively large
differences in the 1981–1983 period,
this divergence motivates us to
consider both the 1981 and 1984
starting points when comparing
model trends with observed trends.
From 1984 onward, the difference
between the two is more stable until
the early 1990s, when first Hurrell cools
relative to HadISST1, then warms in
the late 1990s, and finally cools again
after 2005.

Figures 2a and 2c show the profiles of
the two ensemble mean temperature
trends, the trends in the TTT channel
for the RSS (black), UAH (green), and
UW (purple) MSU data sets, and the TTT
trends for the two model ensembles.
The TTT trend for each ensemble is
plotted at the pressure level where
the ensemble temperature trend is
equal to the ensemble TTT trend. The
UAH, RSS, and UW trends are plotted
at the average of the levels used for
each ensemble. The levels have no
further significance other than allowing
us to plot the MSU data on the same
figure as the ensemble temperature
trends. All numerical values are listed
in Table 1.

For the 1981–2008 period, the
HadISST1 ensemble is very consistent
with the RSS MSU data for the TTT
channel, while the Hurrell ensemble
agrees very well with the UW MSU data.
Conversely, the trend in the UAH MSU
data is much smaller than either model

result. For the 1984–2008 period, the trend in the RSS MSU data is similar, and the trend in the UW MSU data
is nearly identical to the Hurrell model ensemble trend. Conversely, the trend in the UAH data is similar to
but still smaller than the HadISST1 model ensemble trend, which in turn is nearly a factor 2 smaller than
the Hurrell model ensemble trend. We have argued above that the SSTs from 1981 to 1983 are less reliable.
Consequently, the excellent agreement between the HadISST1 ensemble and RSS for the period 1981–2008
noted by Po-Chedley and Fu [2012a] may be fortuitous. Without preferring one SST data for use as boundary
conditions in these AMIP simulations and one particular MSU data set, no conclusion is possible concerning
the possibility that the model tropospheric trends amplify too much with increasing height.

The differences in simulated tropospheric temperature trends between model runs using HadISST1 and
Hurrell are significant compared to the trends themselves, focusing attention on the uncertainty in the SST
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Table 1. Trends (in K/Decade) in Tropical Average (20◦S–20◦N) MSU Channels Over
Both Time Periods Considered in This Study for the Hadisst1 Ensemble, the Hurrell
Ensemble, and the RSS, UAH, and UW MSU Data Setsa

Channel HadISST1 Hurrell RSS UAH UW

1981–2008

TLT 0.139 0.170 0.147 0.091 –
TMT 0.121 0.159 0.114 0.042 0.141
TLS −0.246 −0.239 −0.346 −0.418 –
TTT 0.158 0.199 0.160 0.088 0.187

SST 0.062 0.073 – – –
P-weighted SST 0.065 0.099 – – –

1984–2008

TLT 0.135 0.191 0.179 0.130 –
TMT 0.119 0.187 0.159 0.090 0.183
TLS −0.201 −0.187 −0.257 −0.332 –
TTT 0.151 0.224 0.200 0.132 0.223

SST 0.073 0.092 – – –
P-weighted SST 0.065 0.116 – – –

aThe UW TTT channel data were constructed using the RSS TLS data. The SST
trend and precipitation-weighted SST trend over each period are also shown for the
two ensembles.

data sets. In both periods, the tropospheric trend profile (Figure 2, blue and red solid lines) shows the trend
increase with height qualitatively similar to that of a moist adiabat. Figures 2b and 2d show the ratio of
the difference in atmospheric trend to the difference in the SST trend between the two ensembles (black).
Relative to the trend difference in the two SST data sets, the atmospheric temperature trends show an
amplification that peaks around 200 hPa by a factor of ∼6. The green dotted lines in Figures 2b and 2d show
the amplification of surface temperature trends with height as expected from simple moist adiabatic scaling.
Compared to the expectation from simple moist adiabatic scaling of the trend difference in tropical average
SSTs, the atmospheric trend difference is about a factor 3 too large. While moist adiabatic scaling is not
expected to perfectly capture tropical temperature profile changes (see, e.g., discussion in Singh and
O’Gorman [2012]), this very large discrepancy is disturbing. Indeed, one might have expected that moist
adiabatic scaling performs better for the trend difference (where only SSTs differ) than for the trends in each
calculation where also atmospheric forcings vary with time.

We show in section 4 below that this conundrum can be resolved when considering the relation between
the distributions of deep convection and sea surface temperatures but first discuss some sensitivities of the
model results.

3.2. AMIP Versus Coupled Model Runs
The limitations of AMIP simulations have been discussed, e.g., by Douville [2005], Copsey et al. [2006], and
Emanuel and Sobel [2013]. The importance of these limitations depends on the problem being addressed.
We argue here that trends in tropical tropospheric temperatures can be studied with AMIP simulations,
based on the analysis of an atmosphere/land model with the lower boundary conditions provided by a
coupled model using the identical atmosphere/land components. This perfect model test is performed
using the coupled CM2.1 model [Delworth et al., 2006].

We find that the AMIP framework results in upper tropospheric temperatures that are systematically
warmer than the coupled model, by roughly 0.15 K at 300hPa (not shown). Results for the vertical profile
of trends in the tropical troposphere are shown in Figures 3a and 3b. The AMIP model simulates the fully
coupled model’s trends well, underestimating them by a few percent. For example, at 300 hPa the trend is
∼ 0.4 K/decade and the trend difference is ∼ 0.035 K/decade. (This coupled model generates larger
temperature trends than AMIP models because it does not simulate the recent hiatus in warming of ocean
surface temperatures.) This difference in trends is statistically significant in the upper troposphere. While this
difference is interesting and not well understood, it is an order of magnitude smaller than the trend. Further
tests of the limitations of the AMIP framework are desirable, but we show below that both the HiRAM
and CAM4 atmospheric temperature trend differences are well understood without having to consider
this problem.
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Figure 3. Model sensitivities. (a) Profiles of the linear trends in
atmospheric temperatures in a coupled run of CM2.1 (solid) and a
corresponding AMIP run (dashed) using the same atmospheric and land
models but with prescribed SSTs identical to those in the CM2.1 run.
(b) Profile of the trend difference between the coupled and AMIP run
shown in Figure 3a. The shading shows the 95% confidence interval.
(c) Temperature trend profiles (for the period 1981–2008) in the HadISST1
(“Had For”; blue, solid) and Hurrell (“Hur For”; red, solid) HiRAM model
runs (data as in Figure 2) and an ensemble using HadISST1 but no
atmospheric forcings (“Had Unf”). The shadings show the 95%
confidence intervals. (d) Differences between trends shown in Figure 3c.
Solid line: HadISST1 minus HadISST1 unforced; dashed line: Hurrell minus
HadISST1 model run. The shading shows the 95% confidence interval.
(e) Temperature trend profiles (for the period 1981–2008, single-model
runs) using CESM/CAM4 with HadISST1 and Hurrell SSTs, both without
atmospheric forcings. (f ) As in Figure 3e but for the period 1984–2008.

3.3. Atmospheric Forcings
The HiRAM model runs analyzed in
this paper are simulations forced
with changing greenhouse gases and
aerosols along with the prescribed
sea surface temperature. To assess the
relative importance of the sea surface
temperature forcing to the other
forcings, we run the model (three
ensemble members) with HadISST1
sea surface temperatures, but with
unchanging greenhouse gases and
aerosols (referred to as “unforced
runs”). Figure 3c shows the trend
profile for both ensembles as well
as for the forced Hurrell ensemble.
The largest differences between the
forced/unforced ensembles are in the
lower troposphere, where the unforced
ensemble has a lower trend, and
above 200 hPa where the difference is
primarily due to ozone trends. The
difference in lower tropospheric trends
is mostly due to the trends over land
surfaces. Figure 3d shows that the
effect of the greenhouse gas and
aerosol forcings on the middle and
upper tropospheres is much less than
the effect of changing the SST forcing
data set. The difference between the
ensembles is not statistically significant
at the 95% level above 500 hPa and
is smaller than results from similar
calculations previously reported [Santer
et al., 2005], possibly due to differences
in treatment of ozone.

3.4. CAM4 Model Results
Figures 3e and 3f show that the CAM4
model runs give very similar trends
as the GFDL/HiRAM ensemble model
runs. Most importantly, the tropical
tropospheric trend differences
between the Hurrell- and
HadISST1-based runs peak around

300 hPa at 0.10 K/decade for the period 1984–2008 as do the GFDL/HiRAM runs (see Figure 2c, difference
between red and blue solid lines). In section 4, we show that for both models these differences are a
consequence of differences in the two SST data sets, with model differences playing only a secondary role.

3.5. Sensitivity of Trends to Period
Figure 2 shows trends in terms of the period 1981–2008 to allow comparison with previously published
results and for the period 1984–2008 which omits the period 1982/1983 that we identified as particularly
problematic. Figure 4 shows the sensitivity of the trend to the start date for all start dates up to 1996. The
trends in all quantities vary with start year, which may be expected for data with substantial interannual
variability. More importantly, the differences between the HadISST1- and Hurrell-based ensembles are also
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Figure 4. Midtropospheric temperature trends (TTT channel) in the
HadISST1 ensemble (blue), Hurrell ensemble (red), and the MSU TTT data
from RSS (black), UAH (green), and UW (magenta), computed for different
start dates and shown as function of start date (abscissa). The end date
is 2008 in all cases. (a) The linear trend computed using ordinary least
squares regression. (b) Theil-Sen estimator of the slope.

dependent on the start date, which
indicates that the year-to-year
variability in the difference between
the two SST data sets (Figure 1c) has
a substantial impact on atmospheric
temperature trends.

Figure 4a shows that the temperature
trends determined with ordinary least
squares regression from the three MSU
data sets are typically between those
of the HadISST1 (blue) and Hurrell (red)
ensembles. For a start date between
1981 and 1990, the Hurrell ensemble
trends are remarkably consistent with
those of the UW MSU data, but after
the early 1990s all MSU data sets agree
better with the HadISST1 ensemble
mean. The same calculation with the
more robust Theil-Sen estimator for
trends [Sen, 1968; Lanzante, 1996],
which is less sensitive to start/end
date, shows better agreement with the
Hurrell ensemble mean for all MSU data
from the mid-1980s onward (Figure 4b).

4. Discussion

Tropical deep convection occurs
preferentially over regions of

anomalously high SSTs, and tropical average SSTs may evolve differently than SSTs in regions of deep
convection. In order to characterize the tropical average surface conditions at the locations of deep
convection, we average the SSTs with a weighting given by the precipitation distribution (as in
Sobel et al. [2002]), which is equivalent to the column-integrated latent heating distribution. This
precipitation-weighted temperature Tp is defined as

Tp = ⟨TsP⟩∕⟨P⟩, (1)

where P is precipitation, ⟨⋅⟩ is the tropical (20◦S–20◦N) oceanic average, and Ts is the sea surface
temperature. Tp is defined for each month using the model-generated precipitation for that month. We also
define an SST weighted by the climatological mean (seasonally varying) precipitation, Tpc.

Figure 5. Time series of the difference between the Hurrell and HadISST1
(Hurrell-HadISST1) ensembles in tropical average SST difference (black
dashed), precipitation-weighted SST difference (black solid), and a scaled
version (see text) of the atmospheric temperature difference between
the two model ensembles. All quantities have their time mean removed,
and annual means have been taken.

Figure 5 shows the time series
of average SST difference,
precipitation-weighted SST difference,
and the tropospheric temperature
difference scaled to allow more direct
comparison with the SST differences.
The latter quantity is defined by fitting
the tropical average tropospheric
temperature difference from 400 hPa to
200 hPa with the moist adiabat model
(see Appendix B) to give an equivalent
surface temperature. By doing so, the
amplitude of the upper tropospheric
temperature variability is
approximately scaled to that of the SST
and precipitation-weighted SST,
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Figure 6. SST trend difference (Hurrell minus HadISST1) for the period
1984–2008 (pattern very similar for the period 1981–2008) based on
annual mean data. Also shown are the climatological mean 300 K
temperature isoline (thin black contour), and the warmest quartile
(thick black contour), based on HadISST1 data (contours nearly
identical for Hurrell data). The black dotted lines show the 20◦S–20◦N
latitude belt.

such that the amplitudes of the three
time series can be compared directly.
The figure shows that the upper
tropospheric temperature difference
between the two ensembles evolves
similarly as the difference in tropical
average SSTs (with a correlation of
0.74). Both quantities are smaller from
1984 until the late 1990s and are larger
from the late 1990s onward. However,
the magnitude of this change in the
SST difference is smaller than in the
scaled atmospheric temperature
difference. Conversely, the difference in
precipitation-weighted SSTs captures
not only the magnitude of this transition
better but also more interannual variability
such as the evolution of the difference
during the 1997/1998 El-Niño.
Correspondingly, the correlation between
the upper tropospheric temperature
difference between the two ensembles
and the precipitation-weighted SSTs is
substantially larger (0.93).

Returning to Figure 2, the green solid lines in Figures 2b and 2d show the ratio of the difference in
atmospheric temperature trend and the difference in the precipitation-weighted SST trend (Tp). The much
better agreement with the moist adiabatic scaling (green dotted) indicates that the temperature trend
profile differences can be explained by moist adiabatic scaling from the precipitation-weighted SST
trend difference.

Figure 6 shows a map of the trend differences of annual mean SSTs (Hurrell minus HadISST1) for the period
1984–2008. For the period 1981–2008 the pattern is very similar, but the amplitudes are smaller as expected
from the smaller difference in tropical average SST trends (see Table 1). Also shown is the climatological
mean 300 K temperature isoline and the region of the warmest quartile (thick black contour) based on
HadISST1 data (contours are very similar for Hurrell).

Figure 7 shows the trend in each percentile of the two SST data sets. The two figures show that the two
SSTs have trends that differ most in the warmest regions. This explains the very large atmospheric trend
differences between the HadISST1 and Hurrell ensembles, since the warmest regions are also the regions of
deep convection.

The differences between the SSTs weighted by the climatological mean seasonal cycle of precipitation
(Tpc, triangles in Figure 7) are larger than the differences in area average SSTs (circles) but are still smaller
than when fully considering the temporal covariation in SSTs and rainfall (Tp, diamonds). Hence, Figure 6
provides a qualitative indication where trend differences between the two SSTs matter most for atmospheric
temperature trends, but for the quantitatively correct estimate the exact relation between SSTs and
precipitation distribution is important.

The same mechanism also explains the trend differences in the two CAM4 model calculations. For the period
1984–2008, the two CAM4 model calculations have a trend difference in atmospheric temperatures of
0.10 K/decade at 300 hPa (section 3.4) and a difference in precipitation-weighted SSTs of 0.041 K/decade
(the corresponding value for the HiRAM ensembles is 0.051 K/decade; i.e., the difference between
0.116 K/decade and 0.065 K/decade; see Table 1). Hence, just as for the HiRAM model, the amplification ratio
around 300 hPa (0.10 K/decade/0.041 K/decade) of ∼ 2.4 agrees well with the expectations based on the
moist adiabatic scaling.
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Figure 7. Trends of the percentiles of tropical SST in the HadISST1 (blue) and Hurrell (red) data sets over (a) 1981–2008
and (b) 1984–2008. The symbols show the trend in average SST Ts (circles), SST weighted with the climatological
precipitation Tpc (triangles), and the precipitation-weighted SST Tp (diamonds). The black filled symbols show the
difference between the Hurrell-based and HadISST1-based calculations.

5. Conclusions

Rather subtle differences in SST data have large implications for atmospheric temperature trends in models
using those SSTs as boundary conditions. Compared to expectations based on moist adiabatic temperature
scaling of tropical average trend differences between HadISST1 and Hurrell SSTs, we find that the tropical
tropospheric trend difference in AMIP model (HiRAM and CAM4) calculations using these SSTs is about
a factor 3 too large. However, we show that the model atmospheric temperature trend difference can
be explained by SSTs weighted with the model rainfall, which reveals that trends in the two SSTs differ
substantially more (namely, by that factor 3) in the important regions of deep convection than in the tropical
average. With current SST uncertainties, one cannot conclude that atmospheric general circulation models
have systematic biases in the tropical temperature trend profile. Due to the nonrandom nature of the SST
differences (and likely also atmospheric temperature data differences), the level of agreement between
model and observation depends on SST data set, temperature data set, and period used to calculate trends.
We conclude that resolving the discrepancies between SSTs is imperative to understand trends in tropical
climate in recent decades.

Appendix A: Statistical Uncertainty

For each model configuration, we have three ensemble members. This is a small sample size, and as
such it is difficult to estimate the ensemble spread which is needed to construct confidence intervals.
In total, we have three ensembles of three runs (Hurrell, HadISST1, and HadISST1 without greenhouse
gases and aerosols) that all use the same atmospheric model. We therefore make the assumption that the
spread about the true mean in each ensemble follows the same normal distribution. This is a reasonable
assumption because ensemble spread is mainly a function of the “weather,” which is expected to be similar
in each ensemble. We can then estimate the standard deviation of the difference from the ensemble mean
using all three ensembles. There are only 6 degrees of freedom because each ensemble mean must be
removed. In addition, we subtract 0.5 from the number of degrees of freedom used in the standard error
formula to remove bias [Brugger, 1969]. Therefore, our estimate for the ensemble spread is

�̂�x =
√

1
6 − 0.5

∑
1≤i≤3

∑
1≤j≤3

(xi,j − x̄i)2, (A1)
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where x is the quantity for which the ensemble spread is being estimated, i is the ensemble number, and
j is the run number inside each ensemble. The x̄i is the ensemble mean for each ensemble i. This estimator
performs better than if we had computed the ensemble spread from a single ensemble. Each ensemble
member is independent, so the standard error of the ensemble mean �̂�x̄ is given by �̂�x̄ = �̂�x∕

√
3. When

computing the difference in quantities between the ensembles (e.g., in Figure 2b), we estimate the standard
error by assuming both ensemble means are independent and drawn from a normal distribution with
standard deviation �̂�x . This gives a standard error for the difference of �̂�diff,x =

√
2�̂�x . Once the standard error

of a quantity is estimated, we assume that the variation is Gaussian and use the standard two-sided 95%
confidence interval at ±1.96�̂�.

The trends presented in this paper are computed using ordinary least squares linear regression. Similar
results are obtained when we use the Theil-Sen slope estimator [Sen, 1968] which is less sensitive to outliers
than ordinary least squares [Lanzante, 1996]. The Theil-Sen estimator is useful because some of the largest
differences between the ensembles and the SST data sets are at the start and end of the period.

Appendix B: Moist Adiabat Model

The moist adiabat can be derived from near-surface temperature and relative humidity [Stone and Carlson,
1979], along with assumptions on how the phase of water varies (ice, liquid water, or a mixture). We use the
approximations given in the European Centre for Medium-Range Weather Forecasts Integrated Forecast
System (IFS) documentation (Cycle 40) for the latent heats and vapor pressure, defined as

esat = a1 exp
(

a3

T − T0

T − a4

)
, (B1)

where T0 = 273.16 K and the parameters ai set according to Buck [1981] in the case of liquid water
(a1 = 611.21 Pa, a3 = 17.502, and a4 = 32.19 K) and according to Alduchov and Eskridge [1996] in the case of
ice (a1 = 611.21 Pa, a3 = 22.587, and a4 = −0.7 K).

The IFS documentation assumes that the fraction of liquid water 𝛼 changes according to

𝛼 = 0 T ≤ Tice,

𝛼 =
(

T − Tice

T0 − Tice

)2

Tice < T < T0,

𝛼 = 1 T ≥ T0,

(B2)

where Tice = 250.16 K.

Near the surface, the relative humidity is typically 80% in the tropics. Hence, the moist adiabatic profiles
shown are initialized at the surface with a relative humidity of 80% and constrained to match the model
temperature at the 925 hPa level, as an approximation to boundary layer conditions. The initial relative
humidity of 80% is held fixed and does not have a strong effect on the results as it is approximately constant
throughout the period.
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